Skip to Main Content
Contact
简体中文
  • English
  • 简体中文
Aerospace & Defense

高功率 GaN RF 放大器的热考虑因素

Aug 10, 2022
English
  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn
  • Share in an email

Article

氮化镓 (GaN) 是需要高频率工作(高 Fmax)、高功率密度和高效率的应用的理想选择。与硅相比,GaN 具有达 3.4 eV 的 3 倍带隙,达 3.3 MV/cm 的 20 倍临界电场击穿,达 2,000 cm2/V·s 的 1.3 倍电子迁移率,这意味着与 RDS(ON) 和击穿电压相同的硅基器件相比,GaN RF 高电子迁移率晶体管(HEMT)的尺寸要小得多。因此,GaN RF HEMT 的应用超出了蜂窝基站和军用雷达范畴,在所有 RF 细分市场中获得应用。

其中许多应用需要很长的使用寿命,典型的国防和电信使用场景需要 10 年以上的工作时间。高功率 GaN HEMT 的可靠性取决于基础半导体技术中的峰值温度。为了最大限度地延长和提升 GaN 型放大器系统的寿命和性能,设计者必须充分了解热环境及其局限性。

结温和可靠性

衡量半导体器件可靠性的行业标准指标是平均失效时间(MTTF),这是一种统计方法,用于估计在给定的器件样本经过一定时间的测试后,单个器件失效前经过的时间。MTTF 值通常以年表示,样本中单个器件发生故障前经过的时间越长,MTTF 越高。

结温 Tj,或器件中基础半导体的温度,与衬底材料在保持基础半导体散热上的作用一样,对器件可靠性起着重要作用。与硅的 120 W/mK 热导率相比,碳化硅 (SiC) 的热导率为 430 W/mK,且温度上升时,下降的更缓慢,这使得后者非常适合用于 GaN。对于类似的晶体管布局:60 W 的功耗和 100 μm 的芯片厚度,碳化硅基氮化镓(GaN on SiC) 比 硅基氮化镓(GaN on Si)工作温度低 19 °C,因此 MTTF 更长。[i][ii]

Wolfspeed 通过在直流工作条件下对 GaN HEMT 施加应力,生成 MTTF 与结温的曲线,其中结温高达 375 °C。峰值结温与 MTTF 直接相关,Wolfspeed 的所有 GaN 技术表明,在 225 °C 的峰值结温下,MTTF 大于 10 年。

GaN 结温和表面温度

图 1:无法使用 IR 相机直接测量结温或通道温度。

在 GaN HEMT 的工作过程中,电子在其中从漏极流向源极的 GaN 沟道或结内,达到峰值温度。这种结温无法直接测量,因为它被金属层阻挡(图 1)。

使用红外 (IR) 显微镜可以测量的是器件表面温度,但该温度低于结温。有限元分析 (FEA) 的使用允许创建精确的通道到表面温差,从中可计算出结壳热阻。因此,通过有限元法(FEM)模拟,我们可以将红外表面测量与结关联起来。3

在 Ansys 软件中创建物理模型,以反映 IR 测量系统中使用的硬件。这包括器件夹具底部 75 °C 的边界条件,以匹配 IR 成像条件。软件使用物理对称性对模型进行分段,以减少计算资源消耗和模拟时间( 2)。

图 2:模型截面。器件夹具的底部被限制在 75°C,因为这是为进行最佳器件校准而取用的所有 IR 测量值对应的散热器温度。

放大率为 5 倍的 IR 相机分辨率约为 7 μm,而产生热量的通道宽度小于 1 μm,并埋在其他几层材料之下。因此,IR 相机测量的是空间平均值( 3)。由此产生的数据值明显低于实际峰值结温。例如,当 7 μm 以上的空间平均温度为 165 °C 时,峰值结温可能高达 204 °C。

图 3:利用以热源为中心的 7μm 截面上模型的平均温度,通过统计分析计算 IR 测量值与模拟结果的相关性。

计算热阻

结与壳之间的温差由热阻引起,通过将结与壳之间传递的热量乘以结与壳之间的热阻而得出。下面的等式 1 将热阻描述为空间中支持固定热流(q)的两个表面之间的温差(Δ)。4

等式 1:

这种关系允许 Wolfspeed 计算峰值结温并确定受测器件(DUT)的 MTTF。

采用 FEM 热仿真来提取热阻 Rθjc。封装法兰底侧的温度保持在固定值 Tc,固定 DC 功率 Pdiss 在 GaN HEMT 中耗散。计算结 (Tj) 和封装法兰背面(Tc)之间的温差,如等式 2 所示。

等式 2:

热阻计算如下。

然而,许多使用 GaN-on-SiC HEMT 的系统在脉冲调制模式下工作,而不是在连续波(CW)模式下工作。了解热阻如何响应脉冲宽度和占空比定义的瞬态而变化,以便将正确的 Rθjc 值应用到应用中,这一点很重要。

为了获得脉冲宽度和占空比的无数组合,使用了几个占空比的热阻与脉冲长度的关系图,其中脉冲长度用对数表示。( 4)。

图 4:瞬态热阻响应曲线显示了 Rθjc 如何随脉冲宽度和占空比而变化。

器件贴装考虑因素

大功率晶体管与系统其余部分之间的界面是长期可靠性的关键,因为它引入了设计者必须在系统级考虑的额外热阻(等式 4)。

等式 4:

其中,Raj 是环境到结热阻,Rint 是界面热阻,Rhs 是散热器到环境热阻。

Wolfspeed 建议用焊接封装的 GaN 器件以获得最佳的热性能。铟箔也可用作热界面材料,但必须选择正确的箔厚度,以避免对法兰施加应力。法兰安装的扭矩不得超过数据表中规定的最大值。5、6

使用数据表来计算 Tj

以 Wolfspeed 适用于 0.5 GHz-3.0 GHz 的 CG2H30070F-AMP GaN HEMT 为例,在 25 °C 的外壳温度下用于 CW 应用。元器件数据表(表 1)中的性能数据可用于计算最高耗散功率,如等式 56 所示。

Typical Performance Over 0.5 - 3.0 GHz (Tc = 25°C)

Parameter
500 MHz
1000 MHz
1500 MHz
2000 MHz
2500 MHz
3000 MHz
Units
Small Signal Gain (S21)
16.7
15.3
17.3
15
16.3
14.8
dB
Gain @ Pin= 39 dBm
10.3
10.4
10.6
9.8
11.4
10.5
dB
Output Power @ Pin= 39 dBm
85
88
90
76
109
89
W
Efficiency @ Pin= 39 dBm
63
57.5
55.6
63.4
62.1
59.8
%
Note: Operating conditions are CW
表 1:使用数据表计算最高耗散功率。

等式 5:

等式 6:

将数据表中的信息插入电子表格软件 - 频率、Pout (dBm)、效率 (%)、Pout (W)、Pin (W) 和 Pdc (W) - 可以快速计算 Pdiss (W) 并选择最高的 Pdiss,在我们的示例中,在 1.5 GHz 下为 79.8 W 或约 80 W。

参考数据表,我们发现这对应于 1.5ºC/W 的 CW 热阻 Rθjc。现在可以按照等式 7 计算峰值结温。

等式 7:

使用以下值:Tc = 25ºC、Pdiss = 80 W 以及 Rθjc = 1.5ºC/W,得到 Tj = 145ºC。

设计支持

在国防 和商业雷达应用以及 LTE 和 5G 部署中,RF GaN 的使用率正在迅速增加。这些应用要求在设计时考虑可靠性。

高功率 GaN HEMT 的可靠性取决于峰值结温,对于工程师来说,了解如何设计最新的 GaN HEMT 以满足其设计可靠性目标变得越来越重要。

若需设计支持,请立即联系 Wolfspeed。


参考目录

  1. 热分析及其在高功率 GaN-HEMT 放大器中的应用 (https://www.wolfspeed.com/knowledge-center/article/thermal-analysis-and-its-application-to-high-power-gan-hemt-amplifiers/)
  2. 硅的热属性 (http://www.ioffe.ru/SVA/NSM/Semicond/Si/thermal.html)
  3. 高功率 SiC MESFET 和 GaN HEMT 晶体管的热性能指南 (https://assets.wolfspeed.com/uploads/2021/06/Appnote%252010.pdf)
  4. 热阻和热导率 (https://ctherm.com/resources/helpful-links-tools/thermalresistanceandconductivity/)
  5. 铟装架程序 (https://www.wolfspeed.com/downloads/dl/file/id/1329/product/0/indium_mounting_procedure.pdf)
  6. 共晶芯片焊接程序 (https://assets.wolfspeed.com/uploads/2020/12/Appnote-2-Eutectic.pdf)
Request SamplesVisit the Sample Center

More Articles

View All
RF
|
通信基础设施

Wolfspeed RF GaN 满足 5G 对功率放大器设计的需求

Wolfspeed GaN on SiC products can replace inefficient silicon parts in 5G cellular transmitter amplifiers, achieving higher linearization, greater power density and improved thermal conductivity.
Continue Reading  Technical Articles

提升 RF 功率放大器的脉冲保真度

A radar system designer’s most coveted objectives are achieving a long range, adequate resolution to distinguish objects in close proximity to each other, and the ability to not only determine target velocities but target types in order to help differentiate friendlies from adversaries. A combination of both approaches is essential, and engineers can design for peak power points of the load-pull simulation while also paying attention to other parts of the circuit for baseband signal fidelity.
Continue Reading  Technical Articles

Footer

Wolfspeed Logo

Social Media

  • Facebook
  • Instagram
  • Twitter
  • LinkedIn
  • YouTube
Copyright © 2023 Wolfspeed, Inc.